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The burgeoning interest in observabil-
ity, as evidenced by the sheer number of 
related repositories on GitHub, under-
scores the industry’s collective push toward 
more transparent and manageable systems. 
OpenTelemetry, with its comprehensive set 
of APIs, libraries, agents, and instrumenta-
tion, is strategically positioned to cater to this 
demand.

The emphasis on Kubernetes observabil-
ity, in particular, plays into OpenTelemetry’s 
strengths. As organizations increasingly 
adopt Kubernetes for container orchestra-
tion, the need for a unified and standardized 
observability solution becomes paramount. 
OpenTelemetry’s compatibility with 
Kubernetes and its integration with popular 
tools like Prometheus offer a seamless observ-
ability experience for developers and operators 
alike. Moreover, the project’s commitment to 
providing a single set of APIs and instrumenta-
tion for both tracing and metrics ensures that 
users don’t have to juggle multiple tools or face 
integration challenges. This holistic approach 
to observability, combined with the project’s 
open source nature, encourages widespread 
adoption and community contributions.

Source: Serverfault
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Furthermore, the convergence toward 
standard practices in the observability space, 
as indicated by the popularity of topics like 
“metrics” and “OpenTelemetry” among the top 
GitHub repositories, provides a tailwind for 
OpenTelemetry’s growth. As the industry seeks 
standardized solutions to avoid fragmentation 
and ensure interoperability, OpenTelemetry’s 
vision of a unified observability platform 
resonates strongly. In essence, the current 
trajectory of the observability domain, with 
its focus on real-time monitoring, Kubernetes, 
and standardization, amplifies the relevance 
and success of OpenTelemetry in the modern 
software ecosystem.

OpenTelemetry: How it 
Works
OpenTelemetry provides a standard set of 
APIs that define the basic functionalities for 
tracing, metrics, and baggage. “Baggage” refers 
to the key value pairs that can be added to 
spans and are propagated in-band along with 
the trace context. This allows you to annotate 
your traces with custom data that can be used 
for analysis later. The APIs are implemented 
by SDKs, which are language-specific libraries 
that offer a range of configuration options.
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SDKs serve as the foundation for instrumentation libraries, which automatically collect data from popular frameworks and 
libraries. They also configure samplers, which decide which traces to collect based on predefined rules. SDKs also hook into span 
processors, which allow you to add custom logic or attributes to spans as they are started and ended. This is useful for adding 
business-specific information to your traces.

Observers are another feature of SDKs; they are used for reporting asynchronous metrics. These are metrics that are not initiated 
by the application but are pulled from the system, like CPU or memory usage. Context propagation is also enabled by SDKs; this is 
the mechanism that allows trace context to be passed 
between services in a distributed system, ensuring 
that all the spans from the same trace are connected.

The collector is a pivotal component that receives 
data from instrumentation libraries and uses 
context propagation to correlate events across 
multiple services. It employs processors for tasks 
like data filtering and aggregation and extensions 
for additional functionalities, such as health 
checks. The collector then exports the data through 
exporters, which handle a variety of tasks from data 
transformation and serialization to transmission to 
backend systems.

Additional components, like resource detectors, 
enrich the data with metadata. Integrations 
facilitate compatibility with other observability 
tools. Client libraries are used for collecting data 
from frontend or mobile applications. All these 
components are supported by extensive documen-
tation and can contribute to or utilize the contrib 
repository, which is a community-maintained 
collection of extensions and integrations.

In summary, the flowchart provides a holistic view 
of OpenTelemetry’s complex architecture, detailing 
how data flows from collection to export. It also 
highlights the framework’s extensibility and the 
customization options available at different stages.
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