
OpenTelemetry
Prepared for Chronosphere
By Torsten Volk, Managing Research Director, Hybrid Cloud, Software-Defined Infrastructure, and Machine Learning 

The burgeoning interest in observabil-
ity, as evidenced by the sheer number of 
related repositories on GitHub, under-
scores the industry’s collective push toward 
more transparent and manageable systems. 
OpenTelemetry, with its comprehensive set 
of APIs, libraries, agents, and instrumenta-
tion, is strategically positioned to cater to this 
demand.

The emphasis on Kubernetes observabil-
ity, in particular, plays into OpenTelemetry’s 
strengths. As organizations increasingly 
adopt Kubernetes for container orchestra-
tion, the need for a unified and standardized 
observability solution becomes paramount. 
OpenTelemetry’s compatibility with 
Kubernetes and its integration with popular 
tools like Prometheus offer a seamless observ-
ability experience for developers and operators 
alike. Moreover, the project’s commitment to 
providing a single set of APIs and instrumenta-
tion for both tracing and metrics ensures that 
users don’t have to juggle multiple tools or face 
integration challenges. This holistic approach 
to observability, combined with the project’s 
open source nature, encourages widespread 
adoption and community contributions.

Source: Serverfault

OBSERVABILITY-RELATED BUSINESS DISCUSSIONS ON Y-COMBINATOR

MONTHLY OBSERVABILITY-RELATED WEB SEARCH TERMS

MONTHLY OBSERVABILITY-RELATED DISCUSSIONS ON KUBERNETES SLACK MONTHLY OPENTELEMETRY-RELATED DISCUSSIONS ON KUBERNETES SLACK

2016 2017 2018 2019 2020 2021 2022 2023
0

100

200

300

400

500

N
um

be
r o

f P
os

ts

Jul 2019 Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022 Jan 2023
0

5

10

15

20

25

30

createdAt

N
um

be
r o

f P
os

ts

2016 2017 2018 2019 2020 2021 2022
0

1000

2000

3000

4000

5000

N
um

be
r o

f W
eb

 S
ea

rc
he

s

2010 2012 2014 2016 2018 2020 2022 2024

0

50000

100000

150000

200000

250000

N
um

be
r o

f W
eb

 S
ea

rc
he

s

80

60

40

20

OPENTELEMETRY-RELATED BUSINESS DISCUSSIONS ON Y-COMBINATOR

MONTHLY OPENTELEMETRY-RELATED WEB SEARCH TERMS

July
October

2020
April

July
October

2021
April

July
October

2022
April

July
October

2023
April

July
October

0

10

20

30

40

50

60

70

80

2015 2016 2017 2018 2019 2020 2021 2022 2023

0
N

um
be

r o
f M

en
tio

ns
 p

er
 M

on
th

N
um

be
r o

f M
en

tio
ns

 p
er

 M
on

th



Furthermore, the convergence toward 
standard practices in the observability space, 
as indicated by the popularity of topics like 
“metrics” and “OpenTelemetry” among the top 
GitHub repositories, provides a tailwind for 
OpenTelemetry’s growth. As the industry seeks 
standardized solutions to avoid fragmentation 
and ensure interoperability, OpenTelemetry’s 
vision of a unified observability platform 
resonates strongly. In essence, the current 
trajectory of the observability domain, with 
its focus on real-time monitoring, Kubernetes, 
and standardization, amplifies the relevance 
and success of OpenTelemetry in the modern 
software ecosystem.

OpenTelemetry: How it 
Works
OpenTelemetry provides a standard set of 
APIs that define the basic functionalities for 
tracing, metrics, and baggage. “Baggage” refers 
to the key value pairs that can be added to 
spans and are propagated in-band along with 
the trace context. This allows you to annotate 
your traces with custom data that can be used 
for analysis later. The APIs are implemented 
by SDKs, which are language-specific libraries 
that offer a range of configuration options.

GITHUB STARS BY REPOSITORY FOR TOPIC: OBSERVABILITY

GITHUB STARS BY REPOSITORY FOR TOPIC: OPEN-TELEMETRY

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

2010 2012 2014 2016 2018 2020 2022 2024

80000

St
ar

s

60000

80000

20000

0

200000

250000

St
ar

s

150000

100000

50000

0

jina-ai/jina
jaegertracing/jaeger
gogf/gf
Nepxion/Discovery
fluent/fluent-bit
open-telemetry/opentelemetry-go
open-telemetry/opentelemetry-specification
open-telemetry/opentelemetry-collector
flipt-io-flipt
open-telemetry/opentelemetry-dotnet
open-telemetry/opentelemetry-collector-contrib
open-telemetry/opentelemetry-java
phongnguyend/Practical.CleanArchitecture
spring-petclinic/spring-petclinic-microservices
open-telemetry/opentelemetry-python
open-telemetry/opentelemetry-rust
grafana/agent
Nepxion/DiscoveryGuide
elastic/apm-server
open-telemetry/opentelemetry-operator

netdata/netdata
apache/skywalking
elastic/kibana
jaegertracing/jaeger
openzipkin/zipkin
cilium/cilium
vectordotdev/vector
kubesphere/kubesphere
PrefectHQ/prefect
thanos-io/thanos
kubernetes/kube-state-metrics
micrometer-metrics/micrometer
google/mtail
RafalWilinski/express-statis-monitor
kiali/kiali
LinShunKang/MyPerf4j
DataDog/datadog-agent
Tencent/TSW
SkyAPM/SkyAPM-dotnet
zalando/logbook



SDKs serve as the foundation for instrumentation libraries, which automatically collect data from popular frameworks and 
libraries. They also configure samplers, which decide which traces to collect based on predefined rules. SDKs also hook into span 
processors, which allow you to add custom logic or attributes to spans as they are started and ended. This is useful for adding 
business-specific information to your traces.

Observers are another feature of SDKs; they are used for reporting asynchronous metrics. These are metrics that are not initiated 
by the application but are pulled from the system, like CPU or memory usage. Context propagation is also enabled by SDKs; this is 
the mechanism that allows trace context to be passed 
between services in a distributed system, ensuring 
that all the spans from the same trace are connected.

The collector is a pivotal component that receives 
data from instrumentation libraries and uses 
context propagation to correlate events across 
multiple services. It employs processors for tasks 
like data filtering and aggregation and extensions 
for additional functionalities, such as health 
checks. The collector then exports the data through 
exporters, which handle a variety of tasks from data 
transformation and serialization to transmission to 
backend systems.

Additional components, like resource detectors, 
enrich the data with metadata. Integrations 
facilitate compatibility with other observability 
tools. Client libraries are used for collecting data 
from frontend or mobile applications. All these 
components are supported by extensive documen-
tation and can contribute to or utilize the contrib 
repository, which is a community-maintained 
collection of extensions and integrations.

In summary, the flowchart provides a holistic view 
of OpenTelemetry’s complex architecture, detailing 
how data flows from collection to export. It also 
highlights the framework’s extensibility and the 
customization options available at different stages.

About EMA 
Founded in 1996, Enterprise Management Associates (EMA) is a leading IT analyst research firm that specializes in going “beyond the surface” to provide deep insight across the full spectrum 
of IT management technologies. Learn more about EMA at www.enterprisemanagement.com or follow EMA on X or LinkedIn. 4358.121423

Library Code

DevOps EngineersData Analysts DevelopersSecurity Analysts

Application Code Framework Code

Instrument Application Code Instrument Framework Code

Collect Metrics, Traces,
Logs, Change Events

Collect Metrics, Traces,
Logs, Change Events

Microservices

OpenTelemetry APIs 
and SDKs

Instrumentation 
Libraries

Metrics, Traces, 
Logs, Change Events

OpenTelemetry 
Collector

Observability 
Platform

End Users

Instrument Code

Instrument Library Code

Collect Metrics, Traces, Logs, Change Events

Batch and Export Data via OTLP, Jaeger, Prometheus, etc.

Generate Telemetry Data

Analyze and Visualize Traces Analyze and Visualize Logs
Analyze and Visualize

Change Events
Analyze and Visualize

Metrics

https://www.enterprisemanagement.com
http://twitter.com/ema_research
http://www.linkedin.com/company/25620

