
GUIDE

Log Data Processing Guide:
Reduce Costs Without
Losing Visibility
A practical, how-to guide for observability teams

2

The challenge you’re facing
Your log data is growing exponentially – 250% year-over-year, on

average – but only a fraction provides value to monitoring and

troubleshooting. You know you need to reduce costs, but you’re

worried about creating blind spots that could impact incident

response or compliance requirements.

DATA TYPE EXAMPLE PROCESSING RULE

High-volume data with low

individual value

• Successful API calls

• Routine operations

• Sample log

• Convert to metric

Non-critical environments or log

levels

• DEBUG logs

• Staging environments

• Sample log

• Drop log

Essential data with size issues • Verbose ERROR logs • Drop field

• Remove whitespace and
unneeded punctuation

Any data you reduce or optimize • The raw data a metric is
derived from

• Route to object storage

Before you start: understand your log usage
To effectively reduce your log data, you need to understand how your team is using your logs.

Does this dataset populate dashboards? Is it referenced in alerts? Or does your team search it

while troubleshooting?

Different processing approaches work better for different use cases. Random sampling might

break your monitoring practices, while dropping error logs entirely could eliminate crucial

troubleshooting context.

Quick decision framework

250%
year-over-year log
growth (on average)

The good news: You can significantly reduce log data costs while maintaining the

visibility you need. The key is applying the right processing rules to the right data types.

USE THIS GUIDE to understand how to pay for the logs you need

– in the right format — while improving your ability to troubleshoot.

3

Processing rules reference

Convert to metric

What it does:

Transforms raw log data into time-series metrics

for monitoring and alerting.

When to use:

You want to monitor behaviors over time (request

counts, latency percentiles, rates, etc.). Here, you

can sacrifice individual log details for aggregate

insights.

Expected outcome:

Significant cost savings vs. raw log storage, but only

when implemented upstream (before ingestion).

Drop log

What it does:

Completely discards specified log types.

When to use:

Non-critical datasets that you don’t need real-time

visibility into.

Expected outcome:

Maximum cost savings for targeted data, but zero

visibility into dropped data. (Use cautiously.)

Calculate the rate of ERROR
messages created by a
service.

EXAMPLE

Drop all DEBUG logs from
staging environments, or
drop verbose health check
logs.

EXAMPLE

4

Sample log

What it does:

Keeps a specified percentage of logs

while discarding the rest.

When to use:

High-volume, repetitive logs where individual

entries have low value. In this situation, you would

need to maintain “success patterns”

for troubleshooting.

Expected outcome:

Substantial volume reduction while preserving

representative samples for pattern analysis.

Drop field

What it does:

Removes unnecessary or redundant fields

from log events while keeping the core log.

When to use:

When removing duplicate fields, null fields,

or unneeded information.

Expected outcome:

Modest per-log savings that accumulate

significantly at scale. Maintains most of the

log context.

Keep 1% of successful HTTP
200 status code logs

(500 out of 50,000 per minute).

EXAMPLE

Remove redundant
environment fields or empty
“user_id” fields.

EXAMPLE

5

Remove whitespace or
punctuation

What it does:

Strips extra spacing, line breaks, and unnecessary

punctuation from log content.

When to use:

Logs have excessive formatting, punctuation, or

whitespace.

Expected outcome:

Small per-log size reduction with meaningful

cumulative savings across millions of logs.

Route to object storage

What it does:

Sends raw log data to cheaper long-term storage

(Amazon S3, Google Cloud Storage, Azure Blob)

instead of your primary logging platform.

When to use:

Compliance requires long-term log retention and

you want to apply processing rules but preserve

original data.

Expected outcome:

Dramatic reduction in long-term retention costs

while maintaining compliance posture and enabling

data rehydration when needed.

Transform “ERROR: Payment
failed \n” to ”ERROR:
Payment failed”

EXAMPLE

Route 100% of raw data to
S3 while keeping processed
logs in your observability
platform.

EXAMPLE

6

Pro tips for success

Remember:

The goal isn’t to eliminate all log data. It is to pay only for the signal, not the noise.

Start with non-critical data

Begin with staging environments or DEBUG logs to gain quick wins.

Layer your approach

Combine multiple rules – convert high-value logs to metrics, sample

the remainder, and route all raw data to object storage.

Monitor the impact

Track both cost reduction and any operational blind spots you’ve created.

Keep compliance in mind

Route original data to object storage before applying destructive

processing rules.

Document your decisions

Maintain a record of what processing rules you’ve applied and why,

for future context.

1.

2.

3.

4.

5.

Join a demo to see how Chronosphere Logs help you control log data

volume and costs in containerized, microservices environments.

Control your log data volume and costs.
Book your spot!

https://chronosphere.io/request-a-demo-logs/

